PDF version of A New Approach to the Sums of Powers

Thursday, 10 May 2018

A PDF version of the previous post is here.

Advertisements

A New Approach to the Sums of Powers

Thursday, 10 May 2018

In the conventional approach to summing powers, that is, finding a polynomial expression for \sum_{h=1}^{n} h^k, the coefficients that arise seem to have no pattern. It had always seemed to me that it ought not to be hard to find such expressions with an elementary approach.

Read the rest of this entry »

Product Formulae for the Fibonacci Numbers

Monday, 7 May 2018

There is a well-known formula for the Fibonacci numbers

\displaystyle F_n = \dfrac{\varphi^n - (-\varphi)^{-n}}{\sqrt{5}}

where

\displaystyle \varphi = \dfrac{1-\sqrt{5}}{2} \approx 1.618^{+}

However, I was surprised to find that there are also product formulae involving trigonometric functions.

Read the rest of this entry »

Tables for the Regular Polyhedra

Saturday, 23 July 2016

For quite some time now, I have been looking in books and online for a set of tables with formulae for conversion between various measures of the platonic solids (the regular polyhedra). None quite fitted my requirements, and so I created my own.

My requirements included:

  • The formulae should all be of a similar form.
  • Where there is a change of dimension, formulae should be given both in terms of the source and the target dimensons.
  • No formula should have a surd (root) in the denominator.
  • The terms in a surd should have reduced factors. (So, in particular, any integer under a square root should be square-free.)

Read the rest of this entry »

Tools for Writing Mathematical Blog Posts

Wednesday, 9 March 2016

My previous post was written with the help of a few very useful tools:

  • LaTeX mathematical typesetting
  • Gummi LaTeX editor
  • Python programming language
  • PyX Python / LaTeX graphics package
  • my own PyPyX wrapper around PyX
  • LaTeX2WP script for easy conversion from LaTeX to WordPress HTML

The Partition Sum of Powers Theorem

Tuesday, 8 March 2016

The set of numbers {S = \{ 0, 1, 2, \dots, 2^{n+1}-1 \}} can be partitioned into two subsets of the same size, such that the two sets have equal sums, sums of squares, sums of cubes, …, up to sums of {n}th powers.

For example, for {n=2}:

\displaystyle S = \{ 0, 1, 2, 3, 4, 5, 6, 7 \}

can be partitioned as

\displaystyle A = \{ 0, 3, 5, 6 \}, B = \{ 1, 2, 4, 7 \}

so that

\displaystyle |A| = |B| = 4

\displaystyle 0 + 3 + 5 + 6 = 1 + 2 + 4 + 7 = 14

and, lastly,

\displaystyle 0^2 + 3^2 + 5^2 + 6^2 = 1^2 + 2^2 + 4^2 + 7^2 = 70

Amazingly, this can be done for any non-negative integer {n}.

Read the rest of this entry »

QiX

Tuesday, 24 November 2015

This is a link to a historical project of mine, hosted on Albert Gräf’s project page.

QiX is a library for Albert Gräf’s Q programming language adding support for univariate polynomials.

There is full documentation available.

Q+Q

Tuesday, 24 November 2015

This is a link to a historical project of mine, hosted on Albert Gräf’s project page.

Q+Q is a library for Albert Gräf’s Q programming language adding support for the rational numbers, ℚ.

There is full documentation available.

Generating Approximate Pythagorean Angles (ADDENDUM) – Simplified Method

Tuesday, 20 October 2015

In a recent post I described a method of generating the simplest primitive Pythagorean triple (a,b,c) where one of the angles of the triangle with sides a, b and c is θ° to within some (small) error bound Δθ°.

One of the steps was, given the cosine C of the angle [from step (2)]:

(3) Calculate the Farey ratio approximant …

R = \sqrt{\dfrac{1-C}{1+C}}

Now, that function

f(C) = \sqrt{\dfrac{1-C}{1+C}}

seemed semi-familiar, resembling functions that occur in trigonometric or hyperbolic identities.
An example is:

\cos( \tan^{-1}(t)) = \sqrt{\dfrac{1}{t^2 + 1}}

A little further investigation, and reading around, including the Wikipedia articles on trigonometric identities, and in particular on those of the tangent half-angle, revealed that the Farey ratio approximant does in fact correspond directly to a simple trigonometric function of the angle:

\tan \left( \dfrac{\theta}{2} \right) = \dfrac{1 - \cos \theta}{\sin \theta} = \dfrac{1 - \cos \theta}{\sqrt{1 - \cos^2 \theta}} = \dfrac{\sqrt{(1 - \cos \theta)^2}}{\sqrt{(1 - \cos \theta)(1 + \cos \theta)}} = \sqrt{\dfrac{1 - \cos \theta}{1 + \cos \theta}}

The slightly simplified method follows.

Read the rest of this entry »

Generating Approximate Pythagorean Angles (IV) – Derivation and Proof of The Method

Saturday, 10 October 2015

In the previous post is a table of values.

Suppose you wish to find the simplest primitive Pythagorean triangle (a,b,c) where one of the angles is θ° to within some (small) error bound Δθ°.

Here’s the derivation of the method which was given in an earlier post.

Read the rest of this entry »