Archive for the ‘Contribution’ Category

Fractional Fibonacci Numbers

Thursday, 7 June 2018

Traditional Formula

There is a well-known formula for the Fibonacci numbers

\displaystyle F_n = \dfrac{\sqrt{5}}{5} \left( \varphi^n - (-\varphi)^{-n} \right)

where

\displaystyle \varphi = \dfrac{\sqrt{5} + 1}{2} \approx 1.618^{+}

is the golden ratio.

It turns out that there is a way to find F_x for when x is not an integer, but the values are complex rather than real.

(more…)

Advertisements

“New Approach to Sums of Powers” — Headlines and Examples

Thursday, 7 June 2018

As the article on sums of powers was rather long and dense, I thought that it would be worth giving a summary of the main results separately.

I will also show the formulae in action with a worked example.

Indirect, Simple Formulae

In the main article, I show that

\displaystyle {\bigoplus_{m=1}^{n}}{}^{(t)} \; m^k = \sum_{j=0}^{k} \left< \begin{array}{c} k \\ j \\ \end{array} \right> \triangle_{k+t}(n-j)

This formula is essentially a polynomial of rising factorial powers.

Special Cases

Perhaps the most important and useful formulae from the main article are

\displaystyle n^k = \sum_{j=0}^{k} \left< \begin{array}{c} k \\ j \\ \end{array} \right> \triangle_{k}(n-j)

and

\displaystyle \sum_{m=1}^{n} m^k = \sum_{j=0}^{k} \left< \begin{array}{c} k \\ j \\ \end{array} \right> \triangle_{k+1}(n-j)

(more…)

A New Approach to the Sums of Powers

Thursday, 10 May 2018

In the conventional approach to summing powers, that is, finding a polynomial expression for \sum_{h=1}^{n} h^k, the coefficients that arise seem to have no pattern. It had always seemed to me that it ought not to be hard to find such expressions with an elementary approach.

(more…)

Product Formulae for the Fibonacci Numbers

Monday, 7 May 2018

There is a well-known formula for the Fibonacci numbers

\displaystyle F_n = \dfrac{\varphi^n - (-\varphi)^{-n}}{\sqrt{5}}

where

\displaystyle \varphi = \dfrac{1-\sqrt{5}}{2} \approx 1.618^{+}

However, I was surprised to find that there are also product formulae involving trigonometric functions.

(more…)

Tables for the Regular Polyhedra

Saturday, 23 July 2016

For quite some time now, I have been looking in books and online for a set of tables with formulae for conversion between various measures of the platonic solids (the regular polyhedra). None quite fitted my requirements, and so I created my own.

My requirements included:

  • The formulae should all be of a similar form.
  • Where there is a change of dimension, formulae should be given both in terms of the source and the target dimensons.
  • No formula should have a surd (root) in the denominator.
  • The terms in a surd should have reduced factors. (So, in particular, any integer under a square root should be square-free.)

(more…)

The Partition Sum of Powers Theorem

Tuesday, 8 March 2016

The set of numbers {S = \{ 0, 1, 2, \dots, 2^{n+1}-1 \}} can be partitioned into two subsets of the same size, such that the two sets have equal sums, sums of squares, sums of cubes, …, up to sums of {n}th powers.

For example, for {n=2}:

\displaystyle S = \{ 0, 1, 2, 3, 4, 5, 6, 7 \}

can be partitioned as

\displaystyle A = \{ 0, 3, 5, 6 \}, B = \{ 1, 2, 4, 7 \}

so that

\displaystyle |A| = |B| = 4

\displaystyle 0 + 3 + 5 + 6 = 1 + 2 + 4 + 7 = 14

and, lastly,

\displaystyle 0^2 + 3^2 + 5^2 + 6^2 = 1^2 + 2^2 + 4^2 + 7^2 = 70

Amazingly, this can be done for any non-negative integer {n}.

(more…)

QiX

Tuesday, 24 November 2015

This is a link to a historical project of mine, hosted on Albert Gräf’s project page.

QiX is a library for Albert Gräf’s Q programming language adding support for univariate polynomials.

There is full documentation available.

Q+Q

Tuesday, 24 November 2015

This is a link to a historical project of mine, hosted on Albert Gräf’s project page.

Q+Q is a library for Albert Gräf’s Q programming language adding support for the rational numbers, ℚ.

There is full documentation available.

Generating Approximate Pythagorean Angles (IV) – Derivation and Proof of The Method

Saturday, 10 October 2015

In the previous post is a table of values.

Suppose you wish to find the simplest primitive Pythagorean triangle (a,b,c) where one of the angles is θ° to within some (small) error bound Δθ°.

Here’s the derivation of the method which was given in an earlier post.

(more…)

Generating Approximate Pythagorean Angles (III) – A Table for (1/100)°

Saturday, 10 October 2015

The previous post provides a worked example of the method.
The next post provides a derivation and proof of the method.

Short Table

θ° ± 0.01° a b c θ° ±%ε
33425 2928 33553 5.006° 62.8%
10° 6351 1120 6449 10.001° 12.9%
15° 1419 380 1469 14.992° −82.8%
20° 66005 24012 70237 19.991° −90.9%
25° 16272 7585 17953 24.992° −79.8%
30° 2911 1680 3361 29.990° −98.4%
35° 7623 5336 9305 34.992° −84.8%
40° 20424 17143 26665 40.009° 86.1%
45° 4059 4060 5741 45.007° 70.6%

A longer table follows

(more…)